Structural completeness for discriminator varieties

Michał Stronkowski

Warsaw University of Technology

Praha, June 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Deductive systems

 $\begin{array}{l} Sent - \text{ set of propositional sentences} \\ Ax - \text{ axioms } (\subseteq Sent) \\ + \text{ inference rules: } \quad \frac{\Delta}{\varphi}, \quad \Delta \subseteq_{\textit{fin}} Sent, \ \varphi \in Sent \\ \text{ (only structural rules - closed on substitutions)} \end{array}$

deductive system (Ax, R)

 φ is a theorem of (Ax, R) provided

there is a proof of φ from Ax with the use of R

Can we shorten proofs of theorems (without adding new axioms)?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Yes, we can by adding derivable rules

Can we do better?

Yes, we can by adding admissible rules

Deductive systems, Structural Completeness

Associate with (Ax, R) a consequence relation

 $\vdash \subseteq \mathcal{P}(\mathit{Sent}) \times \mathit{Sent}$

A rule $\frac{\Delta}{\varphi}$ is derivable if

$$\Delta \vdash \varphi$$

is admissible if for each substitution σ

 $(\forall \psi \in \Delta) \vdash \sigma(\psi) \quad \text{implies} \quad \vdash \sigma(\varphi)$

Structural completeness

Examples of admissible non-derivable rules

Harrop rule
$$\frac{\neg p \rightarrow q \lor r}{(\neg p \rightarrow q) \lor (\neg p \rightarrow r)}$$
 in INT

$$\frac{\Diamond x \land \Diamond \neg x}{\bot} \quad \text{in S5}$$

A deductive system is structurally complete (SC) if every its admissible rule is derivable

Examples for SC

classical logic, Gödel-Dummett logic, INT $^{\rightarrow},$ Medvedev logic, S4.3Grz

Almost structural completeness

WAIT, there are admissible rules that cannot be used in proofs anyway

A rule $\frac{\Delta}{\varphi}$ is passive if $(\forall \sigma \in Subst)(\exists \delta \in \Delta) \not\vdash \sigma(\delta)$

A deductive system is almost structurally complete (ASC) if its admissible non-derivable rules are passive

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples for ASCSCS5, S4.3, L_n

How common is to be $\mathsf{ASC}\backslash\mathsf{SC}$

Maybe it is a negligible issue.

Problem

Determine which ASC deductive systems are SC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quasivarieties

Quasi-identities look like

 $(\forall \bar{x}) \ s_1(\bar{x}) \approx t_1(\bar{t}) \wedge \cdots \wedge s_n(\bar{x}) \approx t_n(\bar{x}) \rightarrow s(\bar{x}) \approx t(\bar{x})$

Quasivarieties look like

Mod(quasi-identities)

Correspondence for algebraizable deductive systems

consequence relation \vdash	\longleftrightarrow	quasivariety ${\cal Q}$
deductive system (Ax, R)	\longleftrightarrow	axiomatization of ${\cal Q}$
logical connectives	\longleftrightarrow	basic operations
theorems	\longleftrightarrow	identities true in ${\cal Q}$
derivable rules	\longleftrightarrow	quasi-identities true in ${\cal Q}$
admissible rules	\longleftrightarrow	quasi-identities true in ${f F}$

SC and ASC algebraically

F - $\mathcal{Q}\text{-algebra}$ over \aleph_0 generators Q(F) - quasivariety generated by F

A quasivariety Q is SC if Q = Q(F), i.e., every quasi-identity valid in F is valid in Q too.

Q is ASC if for every quasi-identity q valid in **F** either q is valid in Q or its premises are not satisfiable in **F**,

i.e., every non-passive quasi-identity valid in ${\boldsymbol{\mathsf F}}$ is also valid in ${\mathcal Q}.$

Theorem (W. Dzik, M.S.)

The following conditions are equivalent

- Q is ASC
- ► For every $\mathbf{A} \in \mathcal{Q}$, $(\exists h : \mathbf{A} \to \mathbf{F})$ yields $\mathbf{A} \in Q(\mathbf{F})$

SC vs ASC problem algebraically

Problem Determine which ASC quasivarieties are SC.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Partial solutions to SC vs ASC problem

Theorem (W. Dzik, M.S.)

 ${\mathcal Q}$ is ASC iff it is SC provided

- F has an idempotent element (groups, lattices)
- every nontrivial algebra from Q admits a homomorphism into
 F (Heyting algebras, McKinsey algebras)

Theorem (W. Dzik, M.S.)

Let $\ensuremath{\mathcal{V}}$ be an ASC variety of closure algebras. The following conditions are equivalent

- V is SC
- \mathcal{V} is a variety of McKinsey algebras
- There is no 4-element simple algebra in $\mathcal V$

Theorem (M.S.)

Let $\ensuremath{\mathcal{Q}}$ be an ASC quasivariety. The following conditions are equivalent

- ► Q is SC
- Every nontrivial *Q*-finitely presented algebra admits a homomorphism into F

Theorem (M.S.)

Let $\ensuremath{\mathcal{Q}}$ be an ASC semisimple quasivariety. The following conditions are equivalent

- ► Q is SC
- Q is minimal or F has an elementary extension with an idempotent element

Discrimintor varieties

Theorem

Let $\ensuremath{\mathcal{V}}$ be a discriminator variety. Then

- V is semisimple
- ▶ V is ASC (S. Burris, W. Dzik)

Corollary

Let $\ensuremath{\mathcal{V}}$ be a discriminator variety. The following conditions are equivalent

- ► V is SC
- ▶ V is a minimal quasivariety or F has an elementary extension with an idempotent element

Corollary

Let \mathcal{V} be an SC discriminator variety. Assume that there are two distinct constants in **F** (like **0** and **1**). Then \mathcal{V} must be minimal.

Example

- 1. All (continuum many) varieties of two-dimensional cylindric algebras are ASC. There are only three such SC varieties: two minimal and one trivial
- 2. All (continuum many) varieties of relation algebras are ASC. There are only four such SC varieties: three minimal and one trivial

Problem

Let $\mathcal V$ be a minimal discriminator variety. Must $\mathcal V$ be minimal as a quasivariety?

Yes if ${\mathcal V}$ is finitely generated or the language of ${\mathcal V}$ is finite

But I constructed a huge counterexample which was wrong

Then I asked Miguel Campercholi and Diego Vaggione

Last Week Theorem (M. Campercholi, D. Vaggione) Every minimal discriminator variety is minimal as a quasivariety.

Question

Problem

How many there are ASC\SC varieties of closure algebras?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The end

This is all

Thank you!